某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,
某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,
某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是______....
某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是______.
展开全部正三角形、正四边形内角分别为60°、90°,当60°×3+90°×2=360°,故能铺满;
正三角形、正五边形内角分别为60°、108°,显然不能构成360°的周角,故不能铺满;
正三角形、正六边形内角分别为60°、120°,当60°×2+120°×2=360°,故能铺满;
正三角形、正八边形内角分别为60°、135°,显然不能构成360°的周角,故不能铺满;
正三角形、正十边形内角分别为60°、144°,显然不能构成360°的周角,故不能铺满;
正四边形、正五边形内角分别为90°、108°,显然不能构成360°的周角,故不能铺满;
正四边形、正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;
正四边形、正八边形内角分别为90°、135°,当90°+135°×2=360°,故能铺满;
正四边形、正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满;
正五边形、正六边形内角分别为108°、120°,显然不能构成360°的周角,故不能铺满;
正五边形、正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;
正五边形、正十边形内角分别为108°、144°,当108°×2+144°=360°,故能铺满;
正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;
正六边形、正十边形内角分别为120°、144°,显然不能构成360°的周角,故不能铺满;
正八边形、正十边形内角分别为135°、144°,显然不能构成360°的周角,故不能铺满.
故可供选择的两种组合是:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形、正五边形、正十边形中任选两种即可.已赞过已踩过你对这个回答的评价是?评论收起为你推荐:1
转载请注明出处。